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Although unsteady, high-Reynolds-number, laminar boundary layers have con- 
ventionally been studied in terms of Eulerian coordinates, a Lagrangian approach 
may have significant analytical and computational advantages. I n  Lagrangian 
coordinates the classical boundary-layer equations decouple into a momentum 
equation for the motion parallel to the boundary, and a hyperbolic continuity 
equation (essentially a conserved Jacobian) for the motion normal to the boundary. 
The momentum equations, plus the energy equation if the flow is compressible, can 
be solved independently of the continuity equation. Unsteady separation occurs 
when the continuity equation becomes singular as a result of touching characteristics, 
the condition for which can be expressed in terms of the solution of the momentum 
equations. The solutions to the momentum and energy equations remain regular. 
Asymptotic structures for a number of unsteady three-dimensional separating flows 
follow and depend on the symmetry properties of the flow (e.g. line symmetry, axial 
symmetry). In  the absence of any symmetry, the singularity structure just prior to 
separation is found to be quasi two-dimensional with a displacement thickness in the 
form of a crescent-shaped ridge. Physically the singularities can be understood in 
terms of the behaviour of a fluid element inside the boundary layer which contracts 
in a direction parallel to the boundary and expands normal to it, thus forcing the 
fluid above it to be ejected from the boundary layer. 

1. Introduction 
A major feature of unsteady large-Reynolds-number flow past a rigid body is the 

shedding of vortices from the surface of the body. Such vortices alter the forces 
exerted on the body dramatically (McCroskey & Pucci 1982). A more complete 
theoretical understanding of vortex shedding would be advantageous in the design 
of air, land and water transport. Theoretical models of vortex shedding also have 
application, inter alia, in the description of air flow over hills and water waves, water 
flow over sand ripples, and blood flow through curved and constricted arteries and 
veins. 

A classical example of vortex shedding develops when a circular cylinder is set into 
motion in the direction normal to its axis. This example was first studied by Prandtl 
(1904), and the process by which an initially attached boundary layer develops into 
a separated flow with detached free shear layers has been clearly illustrated by the 
experiments of Nagata, Minami & Murata (1979), and Bouard & Coutanceau (1980). 
The term ‘separation ’ will in this paper be used to refer to the ‘breakaway ’ of a thin 
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layer of vorticity from the surface of a body. This definition of separation is close to 
that of both Prandtl (1904) and Sears & Telionis (1975). I n  particular, Sears & 
Telionis speak only of separation when the penetration of the boundary-layer 
vorticity away from the wall becomes too large to  be described on the usual O(Re-i) 
boundary-layer ssale (Re is the Reynolds number of the flow, and is assumed large). 
Therefore, once separation has developed the classical attached flow solution will, in 
general, no longer be valid. 

The first theoretical advance in understanding the unsteady cylinder flow at  high 
Reynolds numbers was made by Blasius (1908). He explained the occurrence of flow 
reversal inside the attached unsteady boundary layer which is set up immediately 
the cylinder starts to move. In  the case of steady flow past a rigid surface, flow 
reversal is often accompanied by separhtion. However, Moore (1958), Rott (1956) 
and Sears (1956) all realized that zero wall shear is not necessarily related to 
separation in unsteady flow. Sears & Telionis (1975) noted subsequently that their 
definition of separation is consistent with the termination of the boundary-layer 
solution in a singularity. Such a singularity will be referred to as the separation 
singularity, and the time a t  which it develops as the separation time. 

A considerable number of numerical computations have attempted to verify the 
existence of a singularity in the boundary-layer solution for the circular cylinder 
problem. The first convincing evidence that a singularity forms within a finite time 
was given by Van Dommelen & Shen (1977, 1980a, 1982). In  a Lagrangian 
computation, with fluid particles as independent coordinates, they found that a 
separation singularity develops after the cylinder has moved approximately t of a 
diameter. The existence of this singularity has been confirmed by the finite-difference 
numerical calculations of Ingham (1984) and Cebeci (1982) (however see Cebeci 
1986), and the computer extended series solution of Cowley (1983). These calculations 
were all based on Eulerian formulations. A similar two-dimensional separation 
singularity has been observed using Lagrangian procedures on an impulsively started 
ellipse a t  several angles of attack (L. L. Van Dommelen, T. Wu, C. Chen & S. F. 
Shen, unpublished results), on pitching cylinders (Shen & Wu 1988; Wu 1989), in 
vortex-induced separation and turbulence production (Walker 1988), on an 
impulsively started sphere (Van Dommelen 1987), and using Eulerian schemes in 
leading-edge stall (Cebeci, Khattab & Schimke 1983) and about a rotating cylinder 
(Ece, Walker & Smith 1984). 

Apart from vortex methods, flows with free surfaces, and some more specialized 
compressible flow computations, Lagrangian coordinates have not been as widely 
used as their Eulerian counterparts in fluid mechanics, especially for boundary-layer 
flows. Yet for some flows, such as unsteady flows in which advection dominates 
diffusion, Lagrangian coordinates seem more appropriate (e.g. see the inviscid 
calculations of Stern & Paldor 1983; Russel & Landahl 1984 and Stuart 1988). As far 
as unsteady separation is concerned, the advantage of a Lagrangian approach stems 
from the fact that in these coordinates the classical boundary-layer equations 
decouple into a momentum equation for the motion parallel to the boundary, and a 
continuity equation for the motion normal to the boundary (Shen 1978a, b ) .  The 
solution of the former equation can be found independently of the latter. Moreover, 
while the time that the separation singularity develops can be identified from the 
solution to the momentum equation, only the solution to the continuity equation is 
singular (see $2).  

An important consequence of the Lagrangian approach is that simple descriptions 
can be found to a wide variety of separations in one-, two- and three-dimensional 
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unsteady flows. In  this paper we consider unsteady flows in general, then in Part 2 
(Van Dommelen 1989) the separation proccss that occurs a t  the equatorial plane of 
a sphere which is set into a spinning motion is examined in detail. 

In  the next section we develop the simple analytic machinery needed to find self- 
consistent three-dimensional separation structures for both compressible and 
incompressible fluids. Some of the properties of the Lagrangian version of the 
boundary-layer equations are also discussed. In  5 3 the Lagrangian structure for 
three-dimensional separation is derived under the assumption that the flow can be 
completely general, then in 94 the changes in structure are discussed when various 
symmetries restrict the flow geometry. 

where 

4x3 Y t 4  = 

x,5 x,?l x.s 

Y , [  Y , ?  Y , c  3 PO(L 735) = P ( f >  11, c> O ) ,  (2.26, c )  

(2.3e) 

2. Lagrangian formulation 
The Lagrangian description of boundary-layer flow uses fluid particles (i.e. 

infinitesimal masses of fluid) as the basis of the coordinate system. A convenient 
coordinate system for the fluid particles ([,q,C) is given by the initial Eulerian 
position of the particles (see Lamb 1945 for example) : 

5 = (‘5,q,5) = (x ,y ,z)  a t  t = 0. (2.1) 

The precise form of the Lagrangian solution depends on the particular reference time, 
defined here as the start of the motion, but the physical solution is independent of 
it. 

Following Rosenhead (1963) we assume that the position coordinates x and z 
describe an orthogonal coordinate system on the surface of the body in question. The 
lengths of the line elements dx and dz are taken as h, dx and h, dz respectively. The 
coordinate normal to the surface is denoted by y, which is scaled with the square root 
of the reference shear viscosity. 

In  Lagrangian coordinates, conservation of volume for a compressible fluid can be 
expressed in terms of a Jacobian determinant as follows (e.g. Hudson 1980) : 

p ( f ,  q,c, t )  is the density of the fluid, and a subscript comma denotes a Lagrangian 
derivative. The velocity components of the flow are related to the fluxions of position 

(2 .3a,  b )  

For compressible flow, the momentum and energy equations are (e.g. Rosenhead 

u = h,(x, z )  9, w = h,(x, 2) 5 ,  
by 

where a dot represents a Lagrangian time derivative. 

14fi2\. 
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where p is the scaled shear viscosity, u is the Prandtl number, and gx and gz are the 
components of the acceleration of gravity. The temperature, T ,  and internal energy, 
e ,  are assumed to be functions of density and pressure, while the pressure, p ,  is a 
known function of x, z and t ;  thus 

U W 
P = Pt+-Px+-Pz. 

h, h3 

For an incompressible flow p = 0 and e is taken to be a function of T and p .  

Lagrangian form (see also Shen 1978 a, 6 ) :  
Although the y-derivative D, is Eulerian in nature, it can be written in the 

(2.4) 

From (2.4) it follows that a t  a fixed wall the Eulerian D, and Lagrangian 8/87 
operators differ only by the density ratio, which leads to simplifications in the 
calculation of the wall shear. 

If the boundary can move, appropriate boundary conditions to (2.3) are 

(u, w, p )  = (ub(x, z ,  ')> wb(x, z ,  t)jPb(X, z ,  t ) )  (2.5a) 

(u ,w,P)+ (U,(X,Z,t),We(X,Z,t),P,(X,Z,t)) as y +  00, (2.5b) 

where ub and wb specify the velocity of the boundary in the x- and z-directions 
respectively, u, and we are the corresponding external slip-velocities, pe is the 
external flow density, and the wall density pb can be given implicitly as the 
temperature a t  the wall. Ordinarily, these boundary conditions translate imme- 
diately to the Lagrangian domain by means of (2.3a, b) .  I n  the case of suction or 
blowing through the wall, they must be applied at an 7-boundary moving through 
the Lagrangian domain; however, the wall boundary conditions turn out to be of 
little importance for the local analysis of this paper. 

The principle advantages of Lagrangian coordinates derive from the absence of 
both the normal particle position y and the normal velocity component w from (2.3) 
and (2.4). Consequently, the particles' motion, as projected onto the surface of the 
body (x, z ) ,  can be found independently of the normal particle position y. Subsequent 
integration of the Jacobian (2 .2 )  along lines of particles at constant projected position 
(x, z) yields the normal particle position 

On y = 0, 

where ds2 = dc2 + dq2 + d?, Vx = (x,~, x , ~ ,  x , ~ )  is the Lagrangian gradient, and the 
integral is performed in the Lagrangian ( & q ,  5 ;  t )  coordinate system along the lines 
of constant x , z ,  and t ,  i.e. lines which in physical space are vertical through the 
boundary layer. 

The central issue of this paper can now be stated : we hypothesize that during the 
evolution toward separation, the projected position (x, z )  can remain regular, and 
commonly does remain regular. When true, such regularity strongly restricts the 
possible behaviour of x and z near separation, and to characterize separation we need 
only identify the nature of solutions to the continuity equation (2.2) or (2.6) -an 
equation which is much simpler than the momentum equations. The remaining 
ambiguity in the behaviour of x and z is resolved using arguments of symmetry. 

Various arguments to justify our hypothesis can be given. One of them is self- 
consistency. If it  is assumed that x, z ,  u, w,  and p are non-singular a t  the separation 
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time t,, then the solution to the Lagrangian momentum equations can be expanded 
in powers of (t-t,) to any algebraic order. In contrast, the usual Eulerian asymptotic 
expansions show only that the first few terms in the expansions are self-consistent. 

As another argument, Van Dommelen (1981) showed analytically that the inviscid 
incompressible two-dimensional equations have solutions, x, z ,  which are regular 
functions of the Lagrangian variables, although y(<, t) is singular (this analysis can 
be further developed by expanding in powers of a small coefficient of viscosity). Yet 
this example is somewhat artificial ; physically it would require that during the 
evolution of the boundary layer the coefficient of viscosity was changed significantly 
by some external means. 

A more powerful argument is possibly the capability of the analysis in this paper 
to reproduce and extend several known separation processes previously analysed in 
Eulerian coordinates. However, the most convincing argument is provided by actual 
numerical solutions of the Lagrangian boundary-layer equations. For example, Van 
Dommelen & Shen’s (1980~) computation of the boundary layer on an impulsively 
started circular cylinder provided direct numerical evidence as to regularity of the 
momentum equation. Further, it is in remarkably close agreement with the results 
obtained by Cowley (1983) using a series extension technique. In  particular, Cowley 
(1983) finds a singularity in the solution a t  the same time and position as the 
Lagrangian computations. Ingham (1984) performed an Eulerian Fourier series 
expansion of the solution in the direction along the cylinder. By carefully increasing 
the order of expansion as the spectrum expands due to the incipient singularity, he 
obtained results in close agreement with those of both Van Dommelen & Shen 
(1980~)  and Cowley (1983). The fact that these three very different procedures were 
found to produce results in excellent agreement with one another until very close to 
the breakdown of the solution a t  separation is reassuring, since a number of more 
conventional finite-difference computations (e.g. Telionis & Tsahalis 1974 ; Wang 
1979 ; Cebeci 1986) give significantly different results. The finite-difference results of 
Henkes & Veldman (1987) are exceptions because they remain in agreement with the 
three unconventional methods until relatively close to the singularity (although they 
disagree with Cebeci (1986) a t  a significantly earlier time). One of the difficulties with 
conventional finite-difference procedures, as pointed out by Cebeci (1986), is the need 
to satisfy the CFL condition, a condition which is implicitly satisfied by the three 
procedures of Van Dommelen & Shen, Cowley and Ingham. (See also the integral 
method of Matsushita, Murata & Akamatsu 1984.) 

Clearly in any numerical Lagrangian computations, it is not possible to prove that 
the solution is regular, since the inevitable upper limit on resolution means that high- 
order singularities are difficult to  resolve. However, in the accompanying numerical 
study, Part 2 ,  the boundary layer a t  the equatorial plane of a spinning sphere is 
solved using up to 1000 mesh points across the boundary layer. Even at such high 
resolution, no trace of singular behaviour was observed, and derivatives of high order 
could be evaluated precisely. 

When the fact that solutions to the momentum equations are regular is accepted, 
(and for compressible flow in addition the density must be regular), the next question 
to arise is what implications such regularity has for the structure of the separation 
process. First, only the continuity equation can develop singular behaviour, and 
from ( 2 . 2 )  or (2.6) it follows that this is only possible if the Lagrangian gradients of 
x and z become parallel, i.e. if a t  some point s 

vx = h,Vz, ( 2 . 7 ~ )  
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FIGURE 1. Structure of the separating boundary layer, illustrating the asymptotic scalings in 

the boundary-layer coordinate system (schematic). 

where A, is a constant (Shen 1978b). Generally, the point s of interest is the particle 
and time at  which ( 2 . 7 ~ )  is satisfied for the first time. The condition ( 2 . 7 ~ ~ )  is a three- 
dimensional extension of the two-dimensional condition pointed out by Van 
Dommelen & Shen (1980a); it requires that  a Lagrangian stationary point, V n  = 0, 
exists for an oblique coordinate 

n = x-AA,z. (2.76) 

An alternative way to phrase the condition for singular y is to define a unit vector 
in the n-direction tangential to the wall, 

( 2 . 7 ~ )  

A singularity occurs when, for all infinitesimal changes a< in fluid particle, the 
corresponding changes ar in particle position satisfy 

n .ar = 0, ar = (hxaz ,  h,&). (2.7d, e )  

This implies that  an infinitesimal particle volume atarag around point s has been 
compressed to zero physical size in the n-direction. But since particle volume (or 
mass in compressible flow) is conserved, the compression in the n-direction along the 
wall is compensated for by a rapid expansion in the y-direction which drives the fluid 
above the compressed region a[aqat: ‘far’ from the wall to form a separating 
vorticity layer. 

In this paper asymptotic expansions will be derived when the difference in time St 
from the time that the first singularity occurs is small, so that the boundary layer is 
close to separation (but not yet interactive). That implies that (2.7a) is nearly 
satisfied and the boundary-layer thickness is large. For the non-degenerate t,hree- 
dimensional case analysed in 93, in the Eulerian (n, y)-plane through the particle s 
the boundary layer assumes a structure as sketched in figure 1. The streamwise 
lengthscale for the relevant ‘inner’ expansion around the point s turns out to be 
small of order (St(;. The vertical scale is large compared to  the He-’ 2 transverse 
boundary-layer scale ; this scale is physically proportional to IStl-iBe-;. The vertically 
expanding region propels a layer of vorticity carrying boundary-layer fluid above i t  
away from the wall. The ‘eject,ed’layer retains a typical thickness proportional to 
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Re-;. The variations in the z-direction out of the (n,y)-plane are much slowcr than 
those in the plane, and the structure assumes a quasi-two-dimensional form. 

From (2.6) it can be shown that the above vertical expansion process constitutes 
separation in the sense of Sears & Telionis (1975), since the particle distance from the 
wall becomes too large, ‘infinite’, to  be described on the usual boundary-layer scale. 
Note that the assumed regularity of x and z does not allow an infinite expansion in 
the direction parallel to the wall but normal to n ;  the particle can only expand 
strongly in the direction away from the wall. Similarly for a compressible fluid, the 
assumed regularity of p is inconsistent with an infinite compression of the particle 
volume. (At present there is no direct numerical evidence for the regularity 
assumption in the compressible case, although it is of course self-consistent.) 

From (2.7) we can derive generalized so-called Moore-Rott-Sears (MRS) 
conditions a t  the stationary point, similar to the conditions formulated by Sears & 
Telionis (1975) for two-dimensional flow. The form of the Eulerian I), operator (2.4) 
implies using (2.2b) and (2.7a) that the vorticity vanishes a t  that point, i.e. 

D,u = D,w = 0 at Vn = 0. ( 2 . 8 ~ )  

In fact, the D, operator vanishes for all quantities which remain regular in the 
Lagrangian domain. 

The second MRS condition is more complicated. Since ( 2 . 7 ~ ~ )  is equivalent to two 
conditions on the Lagrangian derivatives of x and z ,  in three-dimensional space we 
expect it to be satisfied on a curve of particles for times beyond the first occurrence 
of separation (cf. 333 and 4.3). The Eulerian projection of the singular curve on the 
wall will be denoted by x,,, = (x,,,, zMRS) and differential changes in the physical 
position of this curve by dr,,, = (h, dXyRS, h, dz,,,). The second MRS condition 
concerns the motion of this projected curve. To derive it, we focus attention on an 
arbitrary point s on the singular curve (rather than our usual choice in which s is the 
first point at which a singularity occurs). First we consider a Lagrangian differential 
a< along the singular curve passing through point s, keeping time constant. Since x 
and z are functions of 5 and t only, a< corresponds to a change in Eulerian position 
along the projected curve which satisfies (2.7d), 

n - arMRS = 0, (2 .8b )  

so that the singular curve is normal to the local vector n. As for any curve, the 
propagation velocity of this curve is given by the component of the propagation 
velocity of points on the curve in the direction normal to the curve. To find an 
expression for it, we now consider a total differential in Lagrangian space-time at  the 
point s, resulting in changes dx,,, = + xs dt and dz,,, = azMRs +is dt. Since 
(h, axMRs, h, azMRS) satisfies (2.8b),  

( 2 . 8 c ,  d )  

which shows that the propagation velocity of the singular curve equals the flow 
velocity of the singular particle s a t  the considered position (x,,,, zyRS). 

While this three-dimensional form of the MRS conditions seems new, the general 
applicability of the two-dimensional case is fairly well established both theoretically 
(Moore 1958; Sears & Telionis 1975; Williams 1977; Shen 1978a; Sychev 1979, 1980; 
Van Dommelen & Shen 1980b, 1982, 1983a, b ;  Van Dommelen 1981) and 
experimentally (Ludwig 1964; Didden & Ho 1985). 

The conditions derived seem consistent with the results of Williams (1978) for 
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unsteady three-dimensional boundary layers equivalent to steady, semi-similar flows 
over moving walls. In  particular Williams found that in the steady-flow coordinate 
system, the velocity component normal to the separation line vanishes, which agrees 
with ( 2 . 8 ~ )  for a steady separation line. The profiles of one velocity component show 
a minimum and those of the other component an inflection point in apparent 
agreement with ( 2 . 8 ~ ) .  However, the inflection point has not yet fully achieved zero 
slope at  the last position where the computation converged. 

We can also verify the notion of Sears & Telionis (1975) that unsteady separation 
occurs in the middle of the boundary layer rather than a t  the wall. In the absence 
of a transpiration velocity, the motion of points on the wall equals the motion of the 
boundary-layer particles a t  the wall, cf. (2.5) and (2 .3a,  b) .  Thus a fluid particle a t  
the wall can only contract to vanishing size in the n-direction if the wall itself 
performs the same contraction, which is not possible for a solid wall. 

In  the next sections the nature of the separation process is analysed. First we form 
local Taylor series expansions for the regular solutions to the momentum equations 
near the stationary point, and then we expand the solutions of the continuity 
equation in an asymptotic series. This procedure is similar to the one followed by Van 
Dommelen & Shen (1982) for two-dimensional separation. In  contrast to the steady 
viscous singularities of Goldstein (1948) and Brown (1965), and the ideas of Sears & 
Telionis ( 1975), the unsteady singularity is essentially inviscid in character and 
consists of two vortex sheets separated by an increasingly large central inviscid 
region (as found by Ockendon (1972) for a rotating disc with suction, and by Sychev 
(1979, 1980), Van Dommelen & Shen (1980b, 1983a, b ) ,  Williams & Stewartson 
(1983) and Elliott, Cowley & Smith (1983) for steady separation over up- and 
downstream-moving walls). The leading-order asymptotic structure of the unsteady 
singularity has also been recovered by Van Dommelen (1981) as a matched 
asymptotic solution to the Eulerian boundary-layer equations. More generally, 
Elliott et al. (1983) showed that there is a certain amount of arbitrariness in the 
Eulerian expansions. The Lagrangian expansion resolves such arbitrariness by the 
assumption (supported by various numerical data, see Van Dommelen & Shen 1982, 
the closing remarks of $4.3, and Part 2) that the leading-order coefficients in the 
Taylor series expansion near the stationary point, are non-zero. 

3. Three-dimensional separation singularities 
In this section we find the leading-order term of an asymptotic analysis which 

describes the local structure of the flow as unsteady separation is approached. The 
time and position at which the separation singularity first develops will be denoted 
by the subscript s ;  thus, for example 

(Vn), = 0, ( 3 . 1 ~ )  

where n is the oblique coordinate corresponding to the initial separation, defined in 
(2.76) as 

n = x-Ah,z. (3.lb) 

Note that the definition of the x- and z-coordinates can simply be interchanged if n 
and z are not independent coordinates. I n  index notation, ( 3 . 1 ~ )  can be written as 
ni = 0, where we will adopt the convention to omit the subscripts comma (to indicate 
Lagrangian derivatives) and s (to indicate the separation particle a t  the separation 
time) if they occur together (i.e. ni = (n , i ) s ) .  
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The solution of the continuity equation (2.2) for y can be greatly simplified by a 
number of coordinate transformations for both the particle position coordinates (x, 
z )  and the Lagrangian coordinates (t, q,<). Here we will select transformations which 
preserve the Jacobian J (2.2b), since these are algebraically more simple than 
transformations which preserve the physical volume H J ,  or mass pHJ.  

As a first transformation, we drop the position coordinate x in favour of n,  shift the 
Lagrangian coordinate system to the separation particle s, and rotate it, resulting in 
the set of coordinates 

3 

n = x-A,z, z ,  ki = Z aij(&-tjs), (3.2 a+) 

where (&, &, E , )  = (t, q ,  6) and aii is an orthonormal rotation matrix which is chosen 
to eliminate the mixed derivatives n,,, n13, and nZ3. Therefore, expanding n and z in 
a Taylor series expansion about the separation point, we obtain 

j=l 

(3 .3a)  
3 3 

n = n,+ C anii k : + .  . . + S t  ns+ C n, k,+. . . 
i = l  ( i=1 

3 

z = z,+ c zi l e i + .  . . + S t i s + .  . . , 
i= l  

(3.3b) 

where St = t - t ,  and the indices indicate differentiation with respect to the current 
Lagrangian coordinate system (kl, k,, k3 ) .  

However, if t ,  is the first time that a stationary point occurs, the Taylor series co- 
efficients in (3.3) cannot be completely arbitrary : the singularity condition may not 
be satisfied anywhere for St < 0. The condition for a singularity to exist for earlier 
times a t  some neighbouring point is, in terms of n and z ,  

n, i - (h -A , ) z , i  = 0, (3 .4a)  

where A is the ratio between Vz and Vx at the neighbouring singular point. If we 
expand (3 .4a)  in a Taylor series, we obtain 

n,,k,-ziSA+ni6t+ ... = 0 for i = 1 , 2 , 3 ,  (3.4b) 

where Sh = A-A,. If all three coefficients n,,, nZ2, and n33 were non-zero, (3.4b) would 
have leading-order solutions for any St < 0. These leading-order solutions can be 
iterated to solutions of the full equation (3.4a) within a vicinity oft,, since the higher- 
order terms not shown in (3.4b) act locally as a contraction mapping. Further, our 
assumption that St = 0 is the first time that a singularity forms, means that solutions 
to  (3.4b) must not exist for St < 0;  hence at  the first occurrence of separation, at least 
one of n,,, n,,, or n33 must necessarily be zero, and we will reorder (k,, k,, k,)  such that 
n,, vanishes. In  addition, the coefficients n,,, n33, z1 cannot all be non-zero, since by 
solving for SA, k,, and k,, i t  again follows that singularities exists for St < 0. Without 
loss of generality, we assume that z1 is zero, since if either n2, or n33 vanishes, the (k,, 
k,, k 3 )  coordinate system can be rotated further to eliminate z,. 

It follows that in some suitably oriented Lagrangian coordinate system the 
conditions n,, = z1 = 0 are necessary a t  the time when separation starts. This implies 
two additional conditions on x(5, t )  and z (5 ,  t ) ,  besides the two conditions implicit in 
(3.1 a ) .  Since Lagrangian space-time is four-dimensional, in general we do not expect 
that more than four conditions can be satisfied at any time. Hence, in the remainder 
of this section we will assume that the values of the remaining derivatives can be 
completely arbitrary and in general non-zero. 
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However, when the functions x and z are not arbitrary, but restricted by 
constraints of symmetry in the flow, the latter assumption needs to be reconsidered, 
since the symmetry requires that various derivatives must vanish. Examples are 
two-dimensional flow, and the flows discussed in the next section. 

Under the assumption that the remaining coefficients in the Taylor series have 
arbitrary values, the transformation 

z " =  z - x ( < , , t ) ,  6 = n-n(<,,t)-Ap2, 

- n z k -n3 , z ,k ,  - n z k + n 2 , z 3 k ,  z1 = k,,  k ,  = 22 , k 3 =  33 

(mi, z; + ni3 z;): (?g2 x i  + 2;); ' 

where ~ $ 2 )  = n22n33 

eliminates the ii,, t#erm. The final coordinate transform 

2(n,, 4 + n33 4 ' 

1, = z1+%z3, 1, = z,, 1, = L3, 
nlll 

n = ' - A ( 3 )  x -3 -p,Stz", z =  5, 

(3) - 'ill '333 - 3'111 '113 '133 + "?13 '111 '3- '113 '1 

6Gf11 ' = fill, z3 where A, - > 

(3.5a, b )  

(3.5 c-e) 

( 3 5 f  1 

(3.6 u-c) 

(3.6d, e )  

(3.6f> 9 )  

eliminates the a,,,, 

measured from a moving, curved line through the separation particle, viz. 

and k3 derivatives 
The transformed position coordinate n corresponds to an oblique coordinate 

a = E-Eo(Z, t ) ,  (3.7a) 

where z =  x-x(<,,t),  z= z-z(<, , t ) ,  (3.7b, c) 

zo(z, t )  = A, z+ A?) 2 + 4 3 )  23 +#us 6tz. ( 3 . 7 4  

Note that the curved line z = To@, t ) ,  which can be viewed as the line along which the 
separation initially develops (see below), does not have a singular shape at  the first 
occurrence of separation. 

The Taylor series expansions for and z near the separation point become 

n = ~ a 2 ~ 1 ~ + ~ ~ i ~ ~ 1 ~ 1 i 1  ~ ~ . . . + 6 t ~ ~ i l i + . . .  (all3 = aa3, = n3 = 0 ) ,  ( 3 . 8 ~ )  

z = z2 I, +z3 1, + . . . . (3.86) 

The characteristics of the Jacobian equation (2 .2 )  for y are, in terms of the new 
coordinates, 

i j  k i 

(3 .9a)  

(3 .9b )  

(3.9c) 
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with a singularity occurring when all three right-hand-side expressions vanish (note 
that not all three are independent). Near the point s, ( 3 . 9 ~ )  is zero on a surface 
approximating the I ,  = 0 plane, while both (3.9b) and ( 3 . 9 ~ )  vanish a t  points 
depending on the nature of the quadratic expression ($iilll 1; +;A,,, 1;). If this 
quadratic is hyperbolic, singular particles occur along hyperbolic lines regardless of 
the sign of 6t. Thus, if 6t = 0 is to be the first time that separation occurs, the 
quadratic must be elliptic, and of the same sign as the constant term when 6t < 0. 
This requires El,, A,,, > 0 and fi,,, 6, < 0;  we will choose the positive I, direction such 
that 

Ti,, a,,, > 0, E2, El,,  > 0, a,, ?il < 0. (3.10 a-c) 

The Lagrangian description of the separation process can now be completed by the 
determination of y a t  times shortly before the initial occurrence of separation. At 
t = t ,  the boundary-layer approximation is obviously no longer valid because from the 
integral (2.6) it follows that y becomes infinite a t  the stationary point. However, the 
rate of growth near this point can be found by means of an asymptotic expansion. 
To find local scalings, we follow the guiding principles of Van Dyke (1975). In  
general, we attempt to scale the Lagrangian coordinates li and the position 
coordinates E ,  r a n d  y to variables Li, N ,  2, and Y such that in the inner region the 
Jacobian equation for Y ,  i.e. 

JL(N, Y , Z )  = I YL, YL, YL, 1 = P A  
PH ' 

(3.11) 

I ZL, ZL, ZL, I 
has non-singular leading-order coefficients. This suggests that the St term in (3.9b), 
which ensures the absence of singular points for St < 0, should be retained. Further, 
for 6t = 0 we want to match the solution close to  the stationary particle to a solution 
for y which is regular away from this point. Thus we want to retain those terms that 
ensure the absence of singular points away from particle 5, at  time 6t = 0, i.e. the 1; 
and l;  terms in (3.9b) and the 1, term in ( 3 . 9 ~ ) .  The appropriate scaling is therefore 

1, = 16tliL,, 1, = IStl",, 1, = I S t l k , ,  (3.12a-c) 

f i  = IStliN, Z =  lStltZ, y = [St[-f Y .  (3.12 d- f )  

These scalings suggest that the separation process occurs in a relatively thin strip, 
a - IStl% along a segment of the separation line z = Z,,(Z, t )  of length Z-  I6tli. 

For the scaling (3.12), the solution for Y is most easily found by integration of 
(3.11) as in (3.9a), where L,  and L, are eliminated in favour of N and 2, which are 
constant along the lines of integration, using (3.8). The result is 

(3 .134  

where P(L ; N ,  2) = -$i,,{X", A,,, L3 + ( 3 ~ , , ,  Z2 -66, X",)  L -6X",N), (3.13b) 

and L,(N,Z) is the real root of the cubic P .  This root is a unique and continuous 
function of N and Z since P is a monotically decreasing function of L from (3.10). 

The choice of sign of the square root in (3.13a), and the limits of integration are 
determined by the topology of the lines of constant N and 2. I n  physical space these 

20 FLM 2l(I 
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lines are straight and pass vertically through the boundary layer, but in Lagrangian 
space they develop high curvature near point s on account of (3.8) and the scalings 
(3.12a, b , c ) .  For, although the surface of constant z through the point s is 
asymptotically planar near s in Lagrangian space, the lines of constant x in this plane 
fold around and appear qualitatively as shown in figure 2(a). I n  this figure, the 
separation particle is indicated by a dot, and the inset a t  the upper right shows the 
same lines of constant x in the Eulerian plane of constant z .  At the separation time, 
the fold at point s collapses to  a cusp. The plane of constant z shown in figure 2(a)  
corresponds asymptotically to the I ,  = 0 plane, with the I, coordinate horizontally 
and the I ,  coordinate vertically. (The same structure occurs in planes I, = constant =I= 
0 ; in terms of the generalized coordinates defined in (3.14), figure 2 (a )  represents lines 
of constant N* in the (LT, L,*)-plane.) 

The lines of constant Nand Z can be divided into three segments corresponding to 
three asymptotic regions. This subdivision is schematically indicated by the 
variation in line thickness in figure 2(a).  The lower segments start a t  the wall and 
extend upward towards the vicinity of the separation particle. Because the Jacobian 
is nowhere singular along these segments, the y-positions of the fluid particles remain 
finite on the boundary-layer scale, i.e. the scaled coordinate Y is small. Hence, these 
lower segments give rise to a layer of particles a t  the wall with a thickness 
comparable with that of the original boundary layer; this is shown schematically in 
figure 1 .  

Along the central segments, the lines of the constant N and Z pass through the 
vicinity of the separation particle. Here the y-position of the particles grows rapidly, 
and is given in scaled form by (3.13). Thus the central segments give rise to the 
intermediate, thicker, layer of particles shown in figure 1 .  The topology of the central 
segments in the Lagrangian domain, figure 2(a),  determines the choice of sign in 
( 3 . 1 3 ~ ) .  From (3.8) and (3.9) it follows that on integrating upwards, L, increases from 
large negative values towards Lo(N,  2). Since Y increases, along this part the negative 
sign in ( 3 . 1 3 ~ )  applies. At position Lo, the lines of constant N and 2 turn around in 
the Lagrangian domain and L,  again tends to -XI; along this second part the 
positive sign in ( 3 . 1 3 ~ )  applies. 

Along the third segments, the lines of constant N a n d  Z proceed upwards toward 
the external flow. As in the lower segments, the Jacobian is no longer small here. 
Thus the changes in y are finite on boundary-layer scale, and the third segments give 
rise to a layer of particles with a boundary-layer scale thickness, atop the central 
region, as shown in figure 1. 

Hence, the separation structure is one in which the boundary layer divides into a 
central layer of physical thickness proportional to Re-: I&-; between two ' sandwich ' 
layers of thickness proportional to Re-;. 

The structure (3.13) is identical to the one obtained by Van Dommelen & Shen 
(1982) for two-dimensional separation, except that  the coefficients now depend on 
the position Z along the describing line z,,. A convenient way to illustrate the 

FIGURE 2 .  Structure of asymmetric three-dimensional separation : (a)  Lagrangian topology of 
vertical lines through the b_oundary layer near the separation particle ; ( b )  contours of the scaled 
boundary-layer thickness Y+ = 5& 5,4+, . . . , 2 +  in scaled, oblique coordinates ; (c) possible actual 
appearance of contours of boundary-layer thickness (schematic) ; ( d )  contours of the scaled velocity 
L: = 0, & 1 ,  & 2 . .  . in scaled coordinates ; ( e )  -L: velocity profiles ; (f) contours of the scaled 
vorticity i3LT/aY* = 0, f 1, i 2 ,  . . . ; (9)  topology of vertical lines through the boundary layer for 
times beyond the first singularity. 

20.2 
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influence of the position Z is to scale out the coefficients using a procedure similar to 
Van Dommelen (1981) : 

(3.14u, b )  
3 -  

L, = pzel = pz(&"l)iLT, L2 = p o E L 2  = po&&z+l)p 4Lt, 

where the variables with a tilde scale out the Taylor series coefficients, the variables 
with asterisks scale out 2, and 

(3.14f, 9 )  
; PsHs 

a = ~ f Z l , , ,  y = (Yii 3 3 22 ii 111 )--, 
Pos Hos 

(3.14 h-j) 

In  terms of the variables with asterisks (3.13) reduces to 

(3.14 k) 
dL* dL* 

(W* - 3L* 4 * 3 ) 6  (W* - 3L* - L"3)t ' 

where L,*(N*) = I@*), (3.15a) 

and the function I is the inverse to the cubic N* = +P+;I, i.e. 

I(N*) = (N* + (1 +N*Z)i)i + (N* - ( 1  +N*2):);. (3.15b) 

The values of P 1 / P 2 ,  apt, and y e  depend on the choice of the Eulerian coordinates 
( x , z ) ,  but not on the definition of the Lagrangian coordinates. 

An alternative expression for Y* can be found in terms of the incomplete elliptic 
integral of the first kind -P($ I m) : 

(3.16a) 

where 
1 3L* 

/I(N*) = (3(Lz2+ l)):, m(N*) = i+s, (3.16b, c)  

(3.16d) 

Elliptic integrals are distorted identity functions, (in particular F($lO) = $ exactly), 
so that the arctan is responsible for the major variations in Y along the 
characteristics. 

Further terms in the asymptotic expansions (3.8) and (3.16) can be found in 
principle. We note that the next term in the expression for Y does not involve a 
logarithmic correction, even though logarithmic second-order terms do arise for the 
symmetric flows studied in the next section. 

We now turn to the physical interpretation of these results. The boundary-layer 
thickness is asymptotically determined by the position of the upper particle layer in 
figure 1 ; letting LT +- 00 along the positive branch of (3.16a), we obtain the scaled 
boundary-layer thickness as 

Y+*(N*) - --P - m . ia1 ) (3.17) 
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The function Y+*(N*) gives the general shape of thc boundary-layer thickness in a 
cross-section of constant z. For large values of N* the boundary-layer thickness 
decays toward zero much more slowly than suggested by the sketch in figure 1. 
Nevertheless, at  the outer edges of the thin separation region, the solution still 
matches with that a t  finite values of y ;  for from (3.12), (3.14), and (3.16) 

(3.18) 

To show the dependence of the boundary-layer thickness on the coordinate z ,  
contours of constant y' in the (A, .@-plane are plotted in figure 2 ( b ) .  Note that the 
coordinate fi is measured from the oblique, curved, separation line. Actual lines of 
constant boundary-layer thickness might, for example, appear as sketched in figure 
2 ( c ) ,  which has been drawn by taking 16tl = 0.06 and unit values for various 
coefficients in (3.7) and (3.14). Asymptotically, the boundary-layer thickness has the 
form of a crescent-shaped ridge. The crescent shape is long and thin, i.e. quasi-two- 
dimensional, because from (3.12) the % lengthscale is asymptotically shorter than the 
z lengthscale (note that for three-dimensional steady separation Smith 1978 has 
proposed a quasi-two-dimensional structure). In an Eulerian numerical calculation, 
the development of such a crescent-shaped ridge may be a possible diagnostic 
indicating the presence of a singularity. 

Evidence of this type of singularity is provided by Ragab's (1986) calculations for 
impulsively started flow past a 4 : 1 prolate spheroid inclined a t  a 30" angle of attack. 
His results strongly suggest that the displacement thickness becomes unbounded 
away from the symmetry line. However, it is not possible to deduce the shape of the 
singularity from the results presented. 

A point of interest is the decay of the boundary-layer thickness along the 
describing line for large 2. From (3.12), (3.14), and (3.16), 

(3.19) 

Hence for increasing Z, the separation structure expands in the %-direction, while the 
thickness of the boundary-layer decreases. 

The particle propagation velocity k which gives rise to the accumulation of 
particles a t  the separation line is, according to (3.8a), given to leading order by 

n'- 16tlfnl,L,. (3.20) 

To describe this in the more familiar Eulerian coordinates, the transcendental 
relationship (3.16) must be inverted to the form 

LT = L?(N*, Y*). (3.21) 

The inversion has been performed numerically, and in figure 2 ( d )  we present contours 
of LT in the (N*, Y*)-plane. From (3.14), 

(3.22) 

It follows that the lines of constant LT shown in figure 2 (d )  describe the shapes of the 
lines of constant n' in cross-sections of constant z through the separation structure. 
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They also give the asymptotic shape of the lines of constant velocity components X 
and i and density p in these cross-sections, since 

(X, i , p )  = ( X s ,  is,&) + IStp (XI, g , p J  PZ(ZZ+ 1)tLT + (&, g,pa+2 + ... .  
Pl % 

(3 .23 )  

We note that the topology of figure 2 ( d )  for lStl x 0 seems quite closc to the computed 
lines of constant velocity presented by Van Dommelen (1981) for finite ]&I, and thus 
lines of constant velocity might be a useful indication of an incipient unsteady 
separation. 

The next point of interest is the shape of the velocity profiles. According to (3.23), 
in Eulerian space the velocity profiles must develop a large flat region of nearly 
constant velocity as separation is approached. However, if we accept the numerical 
results of Van Dommelen (1981), this flat region is only evident extremely close to 
the singularity, so that resolution problems or finite-Reynolds-number effects tend to 
obscure the phemomenon. From (3 .23 )  and figure 2 ( d ) ,  the velocity profiles near an 
incipient three-dimensional separation must have a local maximum or minimum in 
velocity. However, this is not necessarily a precise indication of incipient separation. 
For cxamplc, in the case of the circular cylinder, a minimum in the velocity profiles 
develops relatively quickly, after diameter motion, yet separation occurs much 
later, after diameter motion. Figure 2 ( e )  shows the shape of the velocity profiles 
near the interior extrema. The shapes of the velocity profiles in the sandwich layers 
a t  the edges of figure 2 ( e )  cannot be found from asymptotic analysis since they 
depend on the precise details of the earlier evolution (cf. the remarks below (3 .24)  and 
Part 2 ) .  

A more significant sign of the start of separation might be a transverse expansion 
of the lines of constant vorticity near the velocity minimum/maximum ; since the 
above analysis is inviscid to leading order, the vorticity lines closely follow the 
motion of the boundary-layer particles. I n  the boundary-layer approximation, the 
vorticity is the y-derivative of the velocity distribution. The corresponding 
asymptotic topology of contours of i3LT/i3Y* is shown in figure 2 ( f ) .  This topology 
seems close to  the computed vorticity lines presented by Van Dommelen (1981) for 
a time near separation. 

The asymptotic structures of the upper and lower vorticity layers are similar to the 
two-dimensional case (Van Dommelen 1981). Expressed in terms of Eulerian 
coordinates, they take the form of regular Taylor expansions : 

i 

--m--sz 
('9 ?I, i ,  P )  = C 5 z S ~ ' ( u i n r ( y ) ,  'in,r(y), W i n r f y ) ,  p&nr(~))i ( 3 . 2 4 ~ ~ )  

mnr>0 

(3.24 b)  

respectively, where the sums run over the non-negative integers, and the Prandtl 
transformation, Q = y- y'(Z, .Z, St) ,  describes the motion of the upper layer. 

Substituting (3 .24)  into the boundary-layer equations, we find that the uZnr, w ; ~ ~ ,  
p;,,, (m,  n 2 0 ,  r 2 1)  and the w;nr, (m,  n ,  r 2 0) are determined in terms of the (uzn0, 
wkno, p;,,,), but that these latter functions are indeterminate owing to the 
dependence of the solution on earlier times. The (uk,,,, ~ f ~ , , , p & ~ ~ )  must, however, 
satisfy the boundary conditions ( 2 . 5 ~ )  a t  the wall, and match both a t  the outer edge 
of the boundary layer (see ( 2 . 5 b ) ) ,  and with the central inviscid low-vorticity region. 

-7 l -a  and (2, $ 1  i j  P )  = C 5 S t r ( u f , n r ( ~ ) ,  v+,nr(Y"), wknr(Y"), pAnr(Y")), 
mnr>o 
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At fixed N and 2, the latter matching conditions yield, from inverting (3.16) and 
using (3.23), 

Asymptotic matching conditions can also be derived as /fl,IZI+oo, as Van 
Dommelen (1981) has done for two-dimensional flows. 

A final point of interest is the ‘accessibility’ of the region of flow beyond the time 
of initial separation. In  a steady Eulerian computation, Cebeci, Khattab & 
Stewartson (1981) took the accessible region to be the domain where a boundary- 
layer solution can be found (whether it is still an asymptotically correct solution of 
the Navier-Stokes equations in the presence of interaction or not). In the Lagrangian 
case, some care is needed, because the singular continuity equation is integrated 
separately. Numerical experiments such as the one in Part 2 do in fact suggest that 
the non-singular momentum equations can be integrated past the separation 
singularity without apparent difficulty. When that is done, the vertical lines through 
the boundary layer appear in Lagrangian space as shown in figure 2(g) rather than 
figure 2(a ) .  For the shaded particles, y is indeterminate; these particles may be 
thought of as having disappeared a t  infinite y .  Yet the continuity equation can still 
be integrated along all lines of constant % and zwhich start at the wall. A singularity 
develops only on the line passing through the saddle point in figure 2 (g), which for 
0 c St 4 1 corresponds to a singular line segment 

# N  +(1-2”)%. (3.26) 

However, the solution so obtained must be considered meaningless a t  least for all 
particles which have at some previous time passed through the singular curve. For 
that reason, we define the region of inaccessibility as those stations (2, z )  that contain 
particles that have a t  any time been on the singular curve. Initially, the region of 
inaccessibility will primarily expand in the z-direction through the scaling (3.12 e ) ,  In 
the n-direction it will expand by means of the motion of the describing line (3 .7)  and 
additionally through the motion of the particles which propagate downstream away 
from the singular curve. Thus, the region of inaccessibility extends over a finite 
surface area, rather than just the curve (3.26), in agreement with the steady Eulerian 
definition of Cebeci et al. (1981). 

Naturally, the singularity structure derived here will not remain asymptotically 
correct arbitrarily close to t = t , ,  because the normal velocity above the central 
inviscid region becomes infinite a t  t = t , .  From a study of the Navier-Stokes 
equations it is found that the singularity is smoothed out when a ‘triple-deck’ 
interaction comes into operation for 6t = O(Re-&), a t  which point the scaled 
boundary-layer thickness is O(Reh). Because the singularity is quasi-two- 
dimensional, the scalings and governing equations are essentially those derived by 
Elliott et al. (1983) for two-dimensional flows, but with the addition of a passive 
z-momentum equation. In  the central interaction problem, the coordinate 2 ,  which 
has an interaction lengthscale O(Re-A), only appears as a parameter. However, it is 
not clear whether the singularity will be completely removed by the interaction 
(Smith 1987). 
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4. Three-dimensional symmetric separation 
In the previous section a separation singularity structure was derived assuming 

that the flow was arbitrary, an assumption that might be appropriate for flow past 
an asymmetric body. However, in the case of a spheroid at  relatively small angles of 
attack it is likely that separation first occurs on one of the symmetry lines; indeed 
numerical calculations confined to the symmetry line have been performed on this 
basis (Wang & Fan 1982; Cebeci et al. 1984). In  $4.1 below we derive t,he form of the 
singularity appropriate for separating flows where the separation line crosses a 
symmetry line normally. 

However, this is not the only type of symmetric separation of interest. When a 
sphere is impulsively rotated about a diameter, centripetal effects generate a 
boundary-layer flow towards the equator. After a finite time an equatorial singularity 
develops as a result of a boundary-layer collision. The structure of this singularity on 
the symmetry line has been determined by Banks & Zaturska (1979), and Simpson 
& Stewartson ( 1 9 8 2 ~ ) .  In  this case the separation line coincides with the symmetry 
line. Similar singularities occur after a finite time a t  the apex of a horizontal circular 
cylinder which is impulsively heated (Simpson & Stewartson 1982b), at  the inner 
bend of a uniformly curved pipe through which flow is impulsively started (Lam 
1988), and a t  the stagnation points on a two-dimensional cylinder in oscillating flow 
as a result of steady streaming effects (Vasantha & Riley 1988). 

A more general form of the singularity generated by two symmetric colliding 
boundary layers on a smooth wall would first develop at a point rather than along 
the entire symmetry line. For example, such a singularity might develop on the 
equator of an ellipsoid which is rotated about one of its principal axes, or in starting 
flow through a curved pipe with non-uniform curvature, or a t  the apex of a heated 
ellipsoid. In  $4.2 the three-dimensional structure of such a singularity is derived. The 
results on the symmetry line agree with those of previous authors, but the simplicity 
of the Lagrangian approach allows us to determine additionally the singularity 
structure off this line. The latter is a necessary preliminary in order to formulate 
subsequent asymptotic stages in the separation process. 

Another class of separation singularities is rotationally symmetric about the 
separation point, so that the separation line degenerates to a point. For example, 
singularities develop after a finite time on the axis of a spinning disc or sphere whose 
direction of rotation is impulsively reversed (Bodonyi & Stewartson 1977; Banks & 
Zaturska 1981 ; Stewartson, Simpson & Bodonyi 1982 ; Van Dommelen 1987), and a t  
the apex of a sphere which is impusively heated (Brown & Simpson 1982 ; Awang & 
Riley 1983). The structures of these singularities, which differ owing to  the presence 
and absence of swirl, are derived in SS4.3 and 4.4 respectively. The results on the axis 
agree with those of previous authors, while the singularity structures off the axis are 
new. 

4.1. Lateral symmetry 

When the boundary-layer flow is symmetrical about a line along the surface of the 
body, the describing line of separation must either cross the symmetry line normally 
or coincide with it. In  this subsection we will address the case of normal crossing, 
leaving the second possibility to the next subsection. The case studied here applies 
to  flows such as separation a t  the symmetry plane of spheroids at relatively small 
angles of attack (Wang & Fan 1982; Cebeci et al. 1984). More generally, it may occur 
in flows in which the fluid in a symmetry plane loses kinetic energy, e.g. through an 
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adyerse pressure gradient, leading to flow reversal. It includes the degenerate but 
important case of two-dimensional separation. 

For consistency with $3, we identify the compressed coordinate n with x, where x 
is the coordinate along the symmetry plane. Hence in Lagrangian space, the (c ,  7)- 
plane is the symmetry plane, so that x is an even function of < and z an odd function. 
With this assumption the analysis is a simpler version of the one in the previous 
section. The only transformation of the Lagrangian coordinate system needed is a 
rotation around the <-axis to eliminate the xIz derivative. Also, the discussion 
concerning which derivatives must be zero if t, is the first separation time (see (3.4) 
and following) can be restricted to the symmetry plane to show that the second-order 
derivative which is forced to be zero must lie wit'hin the symmetry plane. 

Hence the structure of the separation process remains basically unchanged, 
although the describing line of separation simplifies, and is now symmetric about the 
symmetry line z = 0 (cf. (3.7)) : 

f i  = x - x ( < , , t ) - 7 z  x33 2 . 
2% 

A degenerate case is two-dimensional flow, where x is totally independent of 5, and 
the separation line becomes a straight generator in the z-direction. In  addition, the 
coefficient PI vanishes, which suppresses the decay of the boundary-layer thickness 
with x .  The resulting structure is described in detail by Van Dommelen (1981). 

Thus lateral symmetry, or more strongly two-dimensionality, does not fun- 
damentally alter the separation process. This conclusion is consistent with the 
symmetry line calculations of Cebeci et al. (1984). Since the velocity profiles have a 
local minimum near the separation particle (figure 2 e ) ,  flow reversal will usually have 
to occur before the flow can separate. 

4.2. Symmetric boundary-layer collision 
When the describing line coincides with the symmetry line, significant changes in 
structure are unavoidable, since the flow is symmetric while the separation structure 
illustrated in figure 2 is asymmetrical. Yet this case is physically important, since it 
occurs on the equator of a sphere given a spinning motion (cf. Part 2 ;  Banks & 
Zaturska 1979), a t  the apex of a horizontal, heated circular cylinder (Simpson & 
Stewartson 1982b), a t  the inner bend in flow through a uniformly curved pipe (Lam 
1988), and at  the stagnation points on a circular cylinder in oscillating flow 
(Vasantha & Riley 1988). It can also be expected in other flows in which the fluid is 
driven towards a plane of symmetry. For example, if an ellipsoid rather than a sphere 
or spheroid is given a spinning motion about one of its principff axes, the separation 
may initially occur a t  a single point rather than in the entire symmetry plane 
simultaneously. This may also be the case for more general heated bodies than a 
circular cylinder with a vertical symmetry plane, such as ellipsoids. 

We identify the compressed coordinate n again with x, but now we take x to be the 
coordinate normal to the symmetry plane. In Lagrangian space, the (q,<)-plane is 
now the symmetry plane, so that x is an odd function of 6 while z is an even function. 
A singularity occurs when x,[ first vanishes a t  the symmetry plane, since the 
derivatives x + ~  and x,< are zero by symmetry. Since the first occurrence of a zero value 
must occur where xV5 is a minimum, the second-order derivat,ives xs7 and xCc must 
vanish, while the other second-order derivatives are zero by symmetry. 

The fact that all the second-order derivatives are zero invalidates the scalings for 
7 and y made in the previous section (e.g. (3.12), (3.14)); hence a separate analysis 
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FIGURE 3. Structure of symmetric three-dimensional separation : La) Lagrangian topology of 
physically vertical lines; ( b )  contours of boundary-layer thickness Y+ = 34,3,24,. . . , 1 ; ( c )  -L: 
velocity profiles; (d )  contours ofL: = 0, i, 1, i t , .  . . ; ( e )  contours of aL?/aY* = 0, 1, f 2 , .  . . ; (f) Lz 
velocity profiles for flow parallel to the symmetry plane; ( 9 )  contours of L: = 0, & 1, f 2 ,  . . . ; (h )  
contours of aL:/aY* = 1,2,3,  . . . ; (i) Lagrangian topology of physically vertical lines beyond the 
first singularity. 

with significant modifications is needed. Proceeding along similar lines as in the 
previous section, a local Lagrangian coordinate system k,, k,, k ,  is introduced with 
origin at the separation particle, but with the same orientation as the original axis 
system. A rotation of this coordinate system around the k ,  axis, 

- ~ , k , - ~ , k ,  - z ,k2+z3k3 
&, = 6,  k,  = f k,  = 

(2; + 2;); ( X ; + Z ; ) t  ’ 
(4.2a-c) 

5 = x, z” = 2-z(<,,t), (4.2d, e) 

can be made to eliminate the Z, derivative. The shearing transformation 

1, = 6 ,  1, = &, +: ‘123 k,, - 1, = la, 
X122 

(4.3a+) 

z =  x, z= z-z(<,,t), (4.3d, e) 

eliminates the z,,~ derivative, resulting in the Taylor series expansions 

x - $Zll1 1: + @,,, 1,z;  +$?,,, I ,  1; + . . . + &tk1 I ,  + . . . , (4.4~) 

z-ql ,+ .... (4.4b) 

The expressions for the characteristics of the Jacobian equation for y become 

(4.56) 

In order to avoid singularities for 6t < 0, the quadratic in (4.5 b) must be elliptic and 
of opposite sign to kl. Since x , ~  is initially positive, cf. (2.1), it follows from (4.4~) and 
(4.5b) that at a first zero 

3Zll1 > 0, 3,,, > 0, TI,, > 0, k, < 0. (4.6 a - d )  
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The characteristics (4.5) are again the lines of constant x and z. The topology ofthe 
lines of constant) x in the (l,,Z,)-plane of constant z is shown in figure 3 ( a ) .  The 
characteristic through point s remains straight by symmetry. This can be compared 
to the asymmetric case figure 2 (a), where the separation characteristic develops a 
cusp at  6t = 0. This difference in the characteristics results in a different separation 
structure. 

Appropriate local scalings near separation can be found using arguments similar 

The continuity integral becomes 

where L,*(X*) = I (X*) .  

This can be written as an elliptic integral similar to (3.16), 

1 3Lz2+6 where 4 X * )  = (3(L0*2+ 1) (Lo*2+3))i, m(X*) = 5- 4A2 ' 

(4.7a) 

(4.7b) 

(4.7c) 

(4.7d, e)  

(4.7.f> 9 )  

(4.7 h-j) 

( 4 . 8 ~ )  

(4.8b) 

(4.9a) 

(4.9 b ,  c)  

(4.9d) 

Note that instead of using L: as the independent variable, there is an advantage in 
using Lz, as given implicitly by the relation 

L?(L,*,X*) = (L,*Z+ l ) q X * / ( L , * 2 +  l$), (4.9e) 

since at  the symmetry line the solution is regular in terms of L,*: 

(in + arctan L:). (4.10) Y*(Lz*, 0) - - 
d 3  
2 
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Contours of the boundary-layer thickness y+ in the (2, @-plane are shown in figure 
3(b). The asymptotic relations for large 121 and 121, corresponding to (3.18) and (3.19), 
are 

(4.1 1) 

(4.12) 

The velocity components and density in the neighbourhood of the stationary point 

2 - -lStli$ap;(iP+ l ) iL? ,  ( 4 . 1 3 ~ )  

are given by 

Hence Lr can be interpreted as the velocity component towards the symmetry plane. 
The scaled velocity profile, -LT, is illustrated in figure 3(c) at a number of X* 
stations. Note that the profiles of the velocity component away from the symmetry 
plane must have an internal minimum in order that this separation process can 
occur. Contours of Lr,  and the corresponding vorticity component, aL?/aY*, are 
illustrated in figures 3 ( d )  and 3 ( e )  respectively. In  cross-sections of constant x ,  the 
variations in velocity parallel to the symmetry plane are proportional to L,*. L,* 
velocity profiles are given in figure 3 (f ), while figures 3 (9)  and (h)  illustrate contours 
of L: and the vorticity aL:/aY*. 

Close to the wall, i.e. as Y+O, 

3 2 2  
;iy P 2 X Y 2 ,  (4.14a, b )  

which match to a regular vorticity layer of similar form to (3.24). Similarly a match 
can be achieved with a separating layer governed by a Prandtl transformation above 
the central inviscid region. 

Figure 3(i)  shows the characteristics, i.e. lines of constant x and z ,  for St > 0. 
Integration of the continuity equation yields a singularity over a segment - 1  < 
2 < 1 of the symmetry line X = 0. Since neither the singularity nor any particles on 
the symmetry line leave the symmetry line, the region of inaccessibility remains 
restricted to the symmetry line. 

A special case occurs for separation a t  the intersection of two symmetry lines, such 
as a t  the apex of an ellipsoid. In that case, in addition to the symmetry in 6, x is an 
even function of g and z an odd one, and the transformations of the Lagrangian 
coordinate system (4.2) and (4.3) become trivial. No changes in the leading-order 
singularity structure occur, since it was already symmetric in z-direction, even 
though this condition was not imposed. However, the velocity parallel to the 
symmetry plane must be antisymmetric, and the density symmetric, cf. (4.136): 

(4.15a, 6) 

In  the case of two-dimensionality, where x is independent of 5, the coefficient /I1 
vanishes as in the previous subsection, suppressing the decay of the boundary-layer 
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thickness with z. The flow on the symmetry line can then be written as a one- 
dimensional problem, and was studied from an Eulerian standpoint by Banks & 
Zaturska (1979) and Simpson & Stewartson (1982a, b) .  In  Part 2, Van Dommelen 
(1989) uses this flow to verify the Lagrangian analysis numerically to high accuracy. 
Favourable numerical comparisons with the singularity structure away from the 
symmetry line have been obtained by Lam (1988) for starting flow through a circular 
pipe. 

The existence of this singularity has also been reported by Stern & Paldor (1983), 
Russell & Landahl (1984) and Stuart (1988) while studying inviscid models for the 
growth of large-amplitude disturbances in boundary layers. In fact, because 
unsteady separation is primarily inviscid in its final stages, an alternative approach 
to that above would be to solve the inviscid version of (2.3) exactly, and then to 
examine the possible singularities of the solutions (see also Van Dommelen 1981 for 
the two-dimensional singularity). This is essentially what Stuart (1988) has done in 
his exact, inviscid, ‘stagnation point ’ analysis. His symmetry assumptions make it 
possible to solve the inviscid governing equations explicitly in both Eulerian and 
Lagrangian coordinates. The singularity structure he identifies is equivalent to the 
above, although the extra symmetry implicit in the stagnation-point assumption 
leads to (4.15a, b)  rather than (4.13b). 

As in $3  the above singular solution will not remain valid for sufficiently small I&( 
because previously neglected pressure gradients will become important (cf. the 
interactive problem for the two-dimensional singularity formulated by Elliott et al. 
1983). Further, because the velocity towards the separation line is much smaller in 
the upper and lower vorticity layers than in the central layer, it  is in the vorticity 
layers that  the effect of the pressure gradient will be felt first. However, i t  is the 
central layer that is responsible for the growth in boundary-layer thickness; thus it 
appears that the first asymptotic rescaling does not lead to an ‘interactive ’ effect to 
smooth out the above singularity. Instead, the singularity continues to  be driven by 
the flow in the central layer, while significant changes occur in the upper and lower 
layers. Similar arguments seem to hold for the singularities in $$4.3 and 4.4 below. 

4.3. Axisymmetric boundary-layer flow with swirl 
Axisymmetric separation can occur on rotationally symmetric spinning bodies such 
as a disk (Bodonyi & Stewartson 1977) or a sphere (Van Dommelen 1987) when their 
sense of rotation is suddenly reversed. 

In  axisymmetric flow, the flow geometry does not depend on 5 and 5 individually, 
but only on the Lagrangian distance, 

$ = (E2 + c% (4.16) 

from the axis 5 = 5 = 0. The displacement of rings of particles $ = 71 = t = constant 
from their original position must remain restricted to a change in physical distance, 

r = (x2+z2)f ,  (4.17) 

from the axis, a rotation around the axis, and a shift in vertical position. Hence 
according to the theory of orthogonal matrices, the solution must be of the form 

2 = c($2,  71, t )  5+ S ( V ,  7 1 9 4  5, ( 4 . 1 8 ~ )  

z = - S ( ~ 2 , 7 1 , t ) 5 + C ( $ 2 , . r , t ) ~ ,  (4.18b) 
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where, because of the assumption of regular x and z ,  

c - X , g ( O ,  'I,o, t )  +Qx,gg(O, 'I, 0, t )  $'+. . . , 
s x,& 'I>(), t )  +Q.,c&), 'I, 0, t )  $, + . . . . 

( 4 . 1 9 ~ )  

(4.19b) 

In  terms of c and s the physical distance from the axis is given by 

r2 = (c2 + s 2 )  @.'. (4.20) 

The Jacobian J in (2.2) can be written in terms of @ and r as 

J = ( r 2 ) , ~ z ~ , ~ - ( r z ) , ~ ~ , ~ ~ .  (4.21) 

The separation occurs a t  a stationary point for r2(k2, 7, t ) ,  and from (4.20) and (4.21) 
it occurs on the axis when 

c(0, 'Is, 4)  = 40, ?Is, ts) = 0. (4.22a, b) 

A rotation of the Lagrangian coordinate system to diagonalize the second-order 
derivatives of x is not advantageous here, since the axial symmetry would be lost. 
Instead we rotate the coordinate system around the symmetry axis, 

to eliminate the Z12 derivative, followed by the shearing transformation 

(4.24 a+) 

to eliminate iE3333 and k3. 

If ts  is the first time that a singularity forms then zlll 
suitable choice of the positive 1, direction 

The characteristics of the Jacobian are lines of constant distance r from the axis. 
must be negative, or for a 

Elll > 0, < 0. (4.25a, b)  

The characteristic lines of constant r in the (@, I,)-plane appear as sketched in figure 
4(a), which may be compared to figures 2(a) and 3(a ) .  

Appropriate local scalings are 

@ = fStl;,8Y*, 1, = lStl,80p2L,*, T = )Stl$~/3~R*, y = ___ '* ( 4 . 2 6 ~ 4 )  
184 rP2 ' 

leading to  a continuity integral 

where Y$(R*) = I@*). 

This can be written as the elliptic integral 

(4.27 6 )  

(4.28a) 
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FIGURE 4. Structure of axisymmetric separation with swirl : (a)  Lagrangian topology of physically 
vertical lines; (b )  the velocity profiles of the two components - U$ and W,*; (c) contours of the 
scaled absolute velocity Y* = 0, i, 1, I t ,  . . . ; ( d )  contours of the scaled vorticity component normal 
to the flow velocity 52, = 0, + 1, +2,  . . . ; ( e )  contours of the scaled vorticity component parallel to 
the velocity 8, = 0, - 1, -2, . . . ; (f)  Lagrangian topology of physically vertical lines beyond the 
first singularity. 

where 

A(R*) = (3(yz2+ 1) (ul;f2+3)3)i, w@*) = -- 1 3YE4 + i8YE2 + 18 
2 4A2 , 

(4.28 b ,  c )  

#(L,*,R*) = 2 arctan [;( - (Y$'+ 3)' (;!: ~- 1))il; (4.28d) 

and Y*2 is related to L: and R* through the solution of the cubic equation 

m*2= 9Zl:2Y*2+(Y*2+3)2Y*2. (4.28e) 

On the axis, ( 4 . 2 8 ~ )  simplifies to 

Y*(L,*,O) = $(an+arctanL,*), (4.29) 

while for large R*, the boundary-layer thickness asymptotes to 

(4.30) 

The velocity components in the radial and azimuthal directions, and the density, 
are 



620 

where K = sgn (Z2-J, and 
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( ! P * 2  + 3) Y*2 3 Y*ZL,* u,. = 2R’ 7 w $ = T ,  (4.32a, b )  

are the symmetric and antisymmetric velocity profiles shown in figure 4(b). It can be 
seen from these profiles that the sense of rotation of the fluid about the axis must 
reverse inside the boundary layer in order for the separation process to be possible. 
This situation occurs when the direction of rotation of a spinning body is reversed. 
What happens when the spin is brought to a halt instead is not clear (Van Dommelen 
1987). 

Both the radial and the circumferential velocity profiles depend non-trivially on 
the parameter x. However the magnitude of the velocity, 

q = (u2+w2)i = I&l”h/33(1 + y ) i  Y*, (4.33) 

docs not ; contours of q are illustrated in figure 4 (c). The vorticity components normal 
to the velocity and parallel to it are proportional to 

(4.34a, b )  

(4.35a, b )  

Contours of these quantities are plotted in figures 4(d )  and 4(e) respectively. 

Y + O  
A match with the sandwich layer adjacent to the wall is again possible, since as 

(4.36 a-c) 

Similarly a match can be achieved with the upper separating layer. 
Figure 4 (f) shows the characteristics for St > 0. The singular line is the physically 

expanding circle R* = 1, but the region of inaccessibility is larger owing to particles 
with L: =I= 0 which move radially outward from the singular line at a greater rate. 

On the axis itself, the continuity integral is particularly simple : 

(4.37) 

When this integral is expanded to second order, a logarithmic correction to the y- 
position is obtained. This and other terms were initially overlooked in Eulerian 
analyses of the flow on the axis (Bodonyi & Stewartson 1977; Banks & Zaturska 
198l), but in a Lagrangian approach the logarithmic term follows naturally from the 
hypothesis that  the solution for the motion parallel to the boundary is regular. (A 
similar logarithmic term arises in the symmetric case, $4.2 above, cf. Part  2.) In fact, 
from this hypothesis alone, the complete singularity structure presented by 
Stewartson et al. (1982) can be recovered by means of a simple integration of (4.37). 

4.4. Axisymmetric boundary-layer collision without swirl 

Finally, we consider the case of axially symmetric flow when there is no rotation of 
the flow about the axis. This case is of interest for heated axially symmetric bodies 
when the axis is vertical (Brown & Simpson 1982; Awang & Riley 1983), and might 
occur in other axially symmetric flows in which the fluid is driven toward the axis. 
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In  the absence of rotation (4.18) simplifies to 

x = C(?k2, 7, t )  6, = c($.", 7, t) c. (4.38) 

No transformations of the Lagrangian coordinate system are needed in this case. It 
follows that if a singularity first appears on the axis c must vanish. The contours of 
constant r are then identical to those for a symmetric collision (figure 3a), while the 
Taylor series coefficients satisfy conditions (4.6a, b ,  d). 

In a similar way to before, suitable local scalings are 

leading to a continuity integral 

where Y$(R*) = I @ * ) .  

This solution can be 'reduced' to the form 

(4.40b) 

where n ( n ;  q5 I m) is the incomplete elliptic integral of the third kind, and 

3Yt2 + 12 
2A2+6 ' 

, n(R*) = 1- 
1 3Yl;s2+6 
2 4A2 

A @ * )  = (3( Yt2 + 1) ( Yt2 + 3)$, m(R*) = -- 

(4.41 b-d)  

$j(L,*,R*) = 2arctan - (Yt2+3) --1 , [i( (2  ))3 (4.41 e) 

Y*(LZ,R*) = (L,*2+ l$I(R*/(L,*2+ 1)". (4.41.f 1 
On the axis (4 .41~)  simplifies to 

+7c + arctan LZ + ___ 
3 d 3  

while for large R* the boundary-layer thickness asymptotes to 

The velocity and density are given to leading order by 

1: - -IStl'$a/PY*, p - p,+)Stpp2p0pL2* 

(4.42) 

(4.43) 

(4.44a, 6) 
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FIGURE 5 .  Structure of axisymmetric separation without swirl: (a) Y* velocity profiles; ( b )  

contours of Y* = O , $ ,  1,1+,. . . ; (c) contours of aP*/aY* = 0, & 1 ,  2 , .  . . . 
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Sample velocity profiles are illustrated in figure 5(a) .  The velocity must have a 
minimum inside the boundary layer for this separation process to be possible. 
Contours of Y* and the vorticity a!P*/aY* are given in figures 5 ( b )  and 5 ( c )  
respectively. Again, a match is possible with the wall layer, since as Y+O, 

(4.45a, b )  

5. Discussion 
In this paper we have shown that the description of attached flow past a body 

using the classical boundary-layer equations can break down after a finite time owing 
to the formation of a local singularity. In  a Lagrangian description the class of 
singularities is characterized by a singular continuity equation, but a regular 
momentum equation. The evidence shows that such singularities are both 
mathematically consistent and physically relevant (e.g. Bouard & Coutanceau 1980 ; 
Van Dommelen & Shen 1980a; Van Dommelen 1987, 1989; Lam 1988). The precise 
structure of the singularity depends on the symmetry of the flow, and some of the 
simpler structures have previously been partially or totally described in Eulerian 
coordinates by other authors. The purpose of this paper is to provide a unified theory 
to facilitate the identification of singularities of the Lagrangian type when they do 
occur. This seems especially relevant for the difficult problem of the asymmetric 
singularity, where the singular behaviour would have to be deduced from a three- 
dimensional unsteady computation. 

These singularities occur when a fluid particle becomes compressed in one direction 
parallel to the boundary. Conservation of mass then implies that fluid above this 
fluid particle is forced out of the boundary layer in the form of a detached vorticity 
layer. A common feature of all the singularities is that the typical lengthscale in the 
direction of compression is O( I&$). However, the strength of the singularity increases 
with the symmetry of the flow; the boundary-layer thickness varies from O((&(-$ for 
the asymmetric singularity to O( I&(-%) for the axisymmetric singularity without swirl. 

Because the singularities take the form of a vertical ejection of fluid from the 
boundary layer, we believe that they indicate the onset of separation as hypothesized 
by Sears & Telionis (1975). While the present singularity structures do at least seem 
to describe the initial genesis of the separating shear layer, within an asymptotically 
short time interactive effects which are neglected in the classical boundary-layer 
formulation must be included (e.g. Elliott et al. 1983; Henkes & Veldman 1987). At 
that stage a new asymptotic scaling must be substituted into the Navier-Stokes 
equations in order to  recover the correct large-Reynolds-number limit. Knowledge of 
the precise asymptotic structure of the singularities is necessary to identify this new 
scaling, and one of the contributions of this work has been to identify the full 
structure of a number of symmetric singularities. 

At first sight the symmetric singularities may appear less likely to occur in 
problems of practical importance. However, they have previously arisen in inviscid 
models of ‘transition to turbulence ’ in regions where symmetric counter-rotating 
longitudinal vortices are forcing the convergence of fluid particles (Stern & Paldor 
1983; Russell & Landahl 1984; Stuart 1988). A three-dimensional extension of the 
work by Smith & Burggraf (1985) may lead to an asymptotic description of 
transition which accounts for viscosity, where the turbulent bursts are associated 
with local regions of classical boundary-layer separation (symmetric or otherwise). 



624 L. L. Van Dommelen and S. J .  Cowley 

This work was presented in part at the IUTAM ‘Fluid Mechanics in the Spirit of 
G. I. Taylor ’ Conference, April 1986, Cambridge. The authors acknowledge financial 
support from the NASA ‘Materials Processing in Space’ program, the SERC, the 
AFOSR, and ICOMP, NASA Lewis. 

R E F E R E N C E S  

AWANG, M. A. 0. & RILEY: N. 1983 Unsteady free convection from a heated sphere a t  high 

BANKS, W. H. H. & ZATURSKA, M. B. 1979 The collision of unsteady laminar boundary layers. 

BANKS, W. H. H. & ZATURSKA, M. B. 1981 The unsteady boundary-layer development on a 

BLASIUS, H. 1908 Grenzschichten in Flussigkeiten mit kleiner Reibung. 2. Math. Phys. 56, 1-37. 
RODONYI, R. J .  & STEWARTSON, K. 1977 The unsteady laminar boundary layer on a rotating disk 

in a counter-rotating fluid. J .  Fluid Mech. 79, 66S688. 
ROUARD, R. & COUTANCEAU, M. 1980 The early stage of development of the wake behind an 

impulsively started cylinder for 40 <Re < 10000. J .  Fluid Mech. 101, 583-607. 
BROWN, S. N. 1965 Singularities associated with separating boundary layers. Phil. Trans. R.  Soc. 

Lond. A 257, 409-444. 
BROWN, S. N. & SIMPSON, C. J. 1982 Collision phenomena in free-convective flow over a sphere. 

J .  Fluid Mech. 124, 123-127. 
CEBECI, T. 1982 Unsteady separation. In Numerical and Physical Aspects of Aerodynamic Flows 

(ed. T. Cebeci), pp. 265-277. Springer. 
CEBECI, T. 1986 Unsteady boundary layers with an intelligent numerical scheme. J .  Fluid Mech. 

163, 12S140. 
CEBECI, T., KHATTAB, A. K. & SCHIMKE, S. M. 1983 Can the singularity be removed in time- 

dependent flows ? In Proc. A.F. Workshop, Colorado Springs. 
CEBECI, T., KHATTAB, A. K. & STEWARTSON, K. 1981 Three-dimensional boundary layers and the 

ok of accessibility. J .  Fluid Mech. 107, 57-87. 
CEBECI, T., STEWARTSON, K. & SCHIMKE, S. M. 1984 Unsteady boundary layers close to the 

stagnation region of slender bodies. J .  Fluid Mech. 147, 315-332. 
COWLEY, S. J. 1983 Computer extension and analytic continuation of Blasius’ expansion for 

impulsive flow past a circular cylinder. J .  FEuid Mech. 135, 389-405. 
DIDDEN, N. & Ho, C.-M. 1985 Unsteady separation in a boundary layer produced by an impinging 

jet. J .  Fluid Mech. 160, 23&256. 
ECE, M. C., WALKER, J. D. A. & DOLIGALSKI, T. L. 1984 The boundary layer on an impulsively 

started rotating and translating cylinder. Phys. Fluids 27, 1077-1089. 
ELLIOTT, J. W., COWLEY, S. J. & SMITH, F. T. 1983 Breakdown of boundary layers:, i. on moving 

surfaces, ii. in semi-similar unsteady flow, iii. in fully unsteady flow. Geophys. Astrophys. Fluid 
Dyn. 25, 77-138. 

GOLDSTEIN, S. 1948 On laminar boundary-layer flow near a position of separation. &. J .  Mech. 

HENKES, R. A. W. M. & VELDMAN, A. E. P. 1987 On the breakdown of the steady and unsteady 

HUDSON, J. A. 1980 The Excitation and Propagation of Elastic Waves. Cambridge University Press. 
INGHAM, D. B. 1984 Unsteady separation. J .  Comput. Phys. 53, 90-99. 
LAM, S.T. 1988 On high-Reynolds-number laminar flows through a curved pipe, and past a 

LAMB, H. 1945 Hydrodynamics. Dover. 
LUDWIG, G. R. 1964 An experimental investigation of laminar separation from a moving wall. 

MATSUSHITA, M., MURATA, S. & AKAMATSU, T. 1984 Studies on boundary-layer separation in 

Grashof number. J .  Engng Maths 17, 355-365. 

J .  Engng Mathti 13, 193-212. 

rotating disc in counter rotating flow. Acta Mech. 38, 143-155. 

Appl. Mathe 1, 43-69. 

interacting boundary-layer description. J .  Fluid Mech. 179, 513-530. 

rotating cylinder. Ph.D. dissertation, University of London. 

A I A A  Paper 64-6. 

unsteady flow using an integral method. J .  Fluid Mech. 149, 477-501. 



Lagrangian description of unsteady boundary-layer separation. Part 1 625 

MCCROSKEY, W. J. & PUCCI, S. L. 1982 Viscous-inviscid interaction on oscillating airfoils in 
subsonic flow. AIAA J .  20, 167-174. 

MOORE, F. K. 1958 On the separation of the unsteady laminar boundary layer. In Boundary-Layer 
Research (ed. H. G. Gortler), pp. 29fS311. Springer. 

NAQATA, H., MINAMI, K. & MURATA, Y. 1979 Initial flow past an impulsively started circular 
cylinder. Bull. JSME 22, 512-520. 

OCKENDON, H. 1972 An asymptotic solution of steady flow above an infinite rotating disk with 
suction. Q. J .  Mech. Appl .  Maths 25, 291-301. 

PRANDTL, L. 1904 Uber Fliissigkeitsbewegung bei sehr kleiner Reibung. In Ludwig Prandtl 
gesammelte Abhandlungen, pp. 575-584. Springer, 1961. 

RAGAB, S. A. 1986 The laminar boundary layer on a prolate spheroid started impulsively from 
rest a t  high incidence. A I A A  Paper 86-1109. 

ROSENHEAD, L. 1963 Laminar Boundary Layers. Oxford University Press. 
ROTT, N. 1956 Unsteady viscous flows in the vicinity of a separation point. Q.  Appl. Maths 13, 

RUSSELL, J. M. & LANDAHL, M. T. 1984 The evolution of a flat eddy near a wall in an inviscid 

SEARS, W. R. 1956 Some recent developments in airfoil theory. J .  Aeronaut. Sci. 23, 4 9 M 9 9 .  
SEARS, W. R. & TELIONIS, I). P. 1975 Boundary-layer separation in unsteady flow. SIAM J .  Appl.  

SIIEN, S .  F. 1978a Unsteady separation according to the boundary-layer equation. Adv. Appl .  

SHEN, S .  F. 1978h Unsteady separation of three-dimensional boundary layers from the Lagrangian 

444-45 1. 

shear flow. Phys. Fluids 27, 557-570. 

Maths 23, 215-234. 

Mech. 13, 177-220. 

viewpoint. In Nonsteady Fluid Dynamics (ed. D. E. Crow & J. A. Miller), pp. 47-51. ASME. 
SHEN, 6. F. & Wu, T.  1988 Unsteady separation over maneuvering bodies. AIAA Paper 88-3552- 

CP. 
SIMPSON, C. J. & STEWARTSON, K. 1982a A note on a boundary-layer collision on a rotating 

SIMPSON, C. J. & STEWARTSON, K. 1982b A singularity in an unsteady free-convection boundary 

SMITH, F. T. 1978 Three-dimensional viscous and inviscid separation of a vortex sheet from a 

SMITH, F. T. 1987 Break-up in unsteady separation. In Forum on Unsteady Flow Separation, 

SMITH, F. T. & BURQQRAF, 0. R. 1985 On the development of large-sized short-scaled disturbances 
in boundary layers. Proc. R .  SOC. Lond. A 399, 25-55. 

STERN, M. E. & PALDOR, N. 1983 Large amplitude long waves in a shear flow. Phys. Fluids 26, 
9ofS919. 

STEWARTSON, K., SIMPSON, C. *J. & BODONYI, R. J. 1982 The unsteady boundary layer on a 
rotating disk in a counter rotating fluid. Part 2. J .  Fluid Mech. 121, 507-515. 

STUART, J. T. 1988 Nonlinear Euler partial differential equations : singularities in their solution. 
In Proc. Symp. Honor o f C .  C. Lin (ed. D. J. Benney, Chi Yuan & F. H. Shu), pp. 81-95. World 
Scientific. 

SYCHEV, V. V. 1979 Asymptotic theory of non-stationary separation. Izv. Akad. Nauk. SSSR,  
Mekh. Zhid. i Gaza No. 6, 21-32. Also Fluid Dyn.  14, 829-838. 

SYCHEV, V. V. 1980 On certain singularities in solutions of equations of boundary layer on a 
moving surface. Prikl. Math. Mech. 44, 83@838. 

TELIONIS, D. P. & TSAHALIS, D. TH. 1974 Unsteady laminar separation over impulsively moved 
cylinders. Acta Astronaut. 1, 1487-1505. 

VAN DOMMELEN, L. L. 1981 Unsteady boundary-layer separation. Ph.D. dissertation, Cornell 
University. 

VAN DOMMELEN, L. L. 1987 Computation of unsteady separation using Lagrangian procedures. 
In Proc. IUTAM Symp.  on Boundary-Layer Separation (ed. F. T. Smith & S. N. Brown), pp. 
73-87. Springer. 

sphere. 2. Angew. Math. Phys. 33, 37CL378. 

layer. Q.  J .  Mech. Appl .  Maths 35, 291-304. 

smooth non-slender body. R A E  Tech. Rep. 78095. 

ASME FED-Vol. 52, pp. 55-64. 



626 L .  L.  Van Domrnelen and 8. J .  Cowley 

VAN DOMMELEN, L.L. 1989 On the Lagrangian description of unsteady boundary-layer 

VAN DOMMELEN, L. 1,. & SHEN, S. F. 1977 Presented at XIIIth Symp. Bienn. Symp. Adu. Meth. 

VAN DOMMELEN, L. L. & SHEN, S. F. 1980a The spontaneous generation of the singularity in a 

VAN DOMMELEN, L.  L. & SHEN, S. F. 1980b The birth of separation. Presented at the XVth Intl 

VAN DOMMELEN, L. L. & SHEN, S. F. 1982 The genesis of separation. In Numerical and Physical 

VAN DOMMELEN, L. L. & SHIN, S. F. 1983a Boundary-layer separation singularities for an 

VAN DOMMELEN, L. L. 6 SHEN, S. F. 1983 b An unsteady interactive separation process. AIAA J .  

VAN DYKE, 1975 Perturbation Methods in Fluid Mechanics, p. 86. Stanford: Parabolic. 
VASANTHA, R. & RILEY, N. 1988 On the initiation of jets in oscillatory viscous flows. Pvw. R .  Soc. 

Lond. A 419, 365-378. 
WALKER, J. D. A. 1988 Mechanism of turbulence production near a wall. ICOMP seminar series, 

iYASA-Lewis, July 26. 
WANG, K.  C. 1979 Unsteady boundary-layer separation. Tech. Rept. MML TR 79-16c. Baltimore : 

Martin Marietta Lab. 
WANG, K. C. & FAN, Z .  Q. 1982 Unsteady symmetry-plane boundary layers end three-dimensional 

unsteady separation. Part I. High incidence. Xan Diego State Univ. Tech. Rep. AE&EM TR-82- 
01. 

WILLIAMS, J. C. 1977 Incompressible boundary-layer separation. Ann. Rev. Fluid Mech. 9, 
113-144. 

WILLIAMS, J. C. 1978 On the nature of unsteady three-dimensional laminar boundary-layer 

WILLIAMS, J. C. & STEWARTSON, K. 1983 Flow development in the vicinity of the trailing edge on 

Wu, T. 1989 Ph.D. dissertation, Cornell University. 

separation. Part 2. The spinning sphere. J .  Fluid Mech. 210, 627-645. 

Prob. Fluid Mech., Olaztyn-Kortewo, Poland. 

separating laminar boundary layer, J .  Comput. Phys. 38, 125-140. 

Congl Theo. Appl. Mech., Toronto, Canada. IUTAM. 

Aspects of Aerodynamic Flows (ed. T. Cebeci), pp. 293-31 1 .  Springer. 

upstream moving wall. Acta Mech. 49, 241-254. 

21, 358-362. 

separation. J .  Fluid Mech. 88, 241-258. 

bodies impulsively set into motion. Part 2. J .  FZuid Me&. 131, 177. 


